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ABSTRACT 
 
 

The trend of the world's population toward urban areas in the littoral region and 

increased likelihood of urban conflict has shifted the focus of the military to operations in 

the urban environment.  There is interest within the DoD to evaluate the ability of U. S. 

forces to operate in the urban environment.  In recent years, the Marine Corps has spent 

considerable time and effort conducting analysis on and development of urban warfare 

Tactics, Techniques and Procedures (TTPs).  There is a need to refine and improve rotary 

wing operations in this setting.  

This thesis modeled and conducted analysis on rotary wing (RW) operations in 

urban combat using the Joint Conflict and Tactical Simulation (JCATS) combat model.  

Focus was given to aircraft survivability to evaluate varying tactics and techniques to aid 

in development of Marine Corps RW TTPs.  Thesis objectives were to evaluate rotary 

wing (RW) survivability in urban combat, determine the major factors impacting on RW 

survivability, give insight into the development of Marine Corps urban RW TTPs, and to 

evaluate JCATS as an urban combat modeling tool. 

A fractional factorial design was used to vary tactical factors and evaluate their 

effects.  Measures of Effectiveness (MOEs) for evaluation of these effects included Blue 

RW kills and Blue RW detections. 
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EXECUTIVE SUMMARY 
 
 

The rise in importance of urban operations has spurred DoD interest to evaluate 

the ability of U. S. forces to operate in the urban environment, develop new tactics and 

doctrine, and to develop models and simulations that accurately depict urban operations.  

This thesis models and conducts analysis on rotary wing (RW) operations in urban 

combat.  Focus is given to aircraft survivability to evaluate varying tactics to aid in 

development of Marine Corps RW Tactics, Techniques and Procedures (TTPs). 

The thesis objectives include: 

 Evaluate rotary wing survivability in an urban environment 

 Determine major factors that impact on survivability 

 Evaluate effect of urban SEAD on RW survivability 

 Give insight into development of doctrine and TTPs for urban RW 
operations 

 Evaluate JCATS as an urban operations modeling tool 
 

For this thesis we use the Joint Conflict and Tactical Simulation (JCATS) combat 

model to run all simulations.  Used throughout the DoD and other U.S. government 

agencies, JCATS was developed by Lawrence Livermore National Laboratory for combat 

and conflict training, exercises, analysis, experiments and rehearsals.  It evolved from a 

merger of the Joint Tactical Simulation (JTS) and the Joint Conflict Model (JCM).  

JCATS is a multi-sided, high resolution, entity level, combat simulation model. 

 xix

Focus is placed on determining and evaluating the factors that have the greatest 

influence on survivability.  Urban rotary wing operations are very complex and involve 

many variables, situations and factors.  Emphasis is placed on a combat scenario that 

simulates company-sized tactical insert of troops to an urban objective (Urban 

Penetration).  The scenario also involves assumptions about the forces involved.  These 

include, but are not limited to, types of urban terrain, enemy and friendly force structure, 

tactics, capabilities, and intelligence.  The analysis includes the use of quantitative MOEs 

that assess overall survivability of rotary wing aircraft in an urban setting.  Consideration 



is given to the validity of the combat model and its depiction of rotary wing operations.  

Qualitative analysis is made to conduct a face validation of the simulation output.  A 26-2 

fractional factorial design is used to conduct analysis of simulation results. 

For Assault aircraft, Altitude and SEAD prove to be the significant factors for 

survival.  Altitude, number of routes, number of LZs and SEAD presence influence 

detection rate of these aircraft.  Detection rates can be lowered significantly if profiles are 

flown at low altitude, with multiple avenues of approach and LZs as well as the use of 

SEAD.  Escort aircraft fared the best when in low altitude profiles.  Though not 

statistically significant at our alpha level, SEAD did improve survivability.  Of note, the 

number of routes and LZs do not influence aircraft kill rates in this scenario.   LZ results 

may be reflective of the small objective area used in this scenario. 

Given the tactical circumstances of this scenario, rotary wing aircraft are 

survivable in an urban environment.  The GCE no-go criteria (less than seven CH-46E 

equivalents in zone) was never reached.  Of the 180 total runs made, seven assault kills 

(the highest number of assault aircraft killed) was achieved three times.  The highest 

number of assault aircraft killed at low altitude was four.  Escort aircraft endure a higher 

casualty rate, but this is to be expected given the nature of their mission.  If proper 

tactical procedures are followed, RW aircraft will survive in urban combat. 

The qualitative results looking at simulation realism are encouraging.  From the 

standpoint of RW aircraft, the model outputs appear to be realistic.  When Altitude and 

Enemy levels were increased to their higher levels, resulting casualty and detection rates 

were understandably higher.  The acquisitions and kill shots of all weapon systems are 

realistic and within the capabilities of the system being modeled.  Overall, the output for 

RW urban operations appears to be realistic. 
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I. INTRODUCTION  

A. INCREASING EMPHASIS ON URBAN OPERATIONS 

In recent years urban warfare has become an extremely important issue.  The 

likelihood that military forces will fight in cities is increasing.  There are many reasons 

for this trend:  continued urbanization and population growth; a new, post-Cold War U.S. 

focus on support and stability operations; and a number of political and technological 

incentives for U.S. adversaries to resort to urban warfare [Ref 1: p. 1].  Increasing global 

urbanization is a predominant post-World War II trend.  In 1920 the United Kingdom 

was the only nation with more than 50 percent of its population in cities and towns of 

more than 20,000.  By 1960, however, one in every four people lived in urban areas 

worldwide.  Ten years later, 12 percent of the world lived in cities with populations over 

five hundred thousand.  The trend continues, as the global population will likely exceed 

seven billion by 2010, an increase of 25 percent over 1996, with the greatest increase 

occurring in developing countries [Ref 2:  p.3]. 

People in developing countries seeking an improved quality of life will migrate 

increasingly to urban areas.  Urbanization and population growth will seriously strain 

fragile societies and weaken infrastructures in some developing states.  In crowded urban 

areas, the negative impact of man-made and natural disasters could be magnified 

exponentially. Any or all of these conditions could foster political radicalization of 

populations, and this radicalization in conjunction with increased urban terrain in 2010, 

especially in developing countries, will increase the probability of urban conflict        

[Ref 2: p. 4]. 

The United States Marine Corps (USMC) Fleet Marine Force Manual (FMFM)  

1-2, The Role of the Marine Corps in National Defense, states, "The increasingly 

probable terrain for political reinforcement tasks under unanticipated, time-sensitive 

circumstances is urban." [Ref 3: 3-13]  The justification for this resides with the fact that 

not only is the trend of world population moving towards large urban areas, but also these 

areas are occurring in littoral regions.  Of note, 60 percent of politically significant urban 

areas (those with political or economic activity that have warranted establishment of a 

1 
 

 



U.S. embassy, legation or other government agency) outside allied or former Warsaw 

Pact territory are located within 25 miles of a coastline; 75 percent are within 150 miles 

of the sea; 87 percent within 300 miles; 95 percent within 600 miles; and all within 800 

miles [Ref 4: 1-1]. 

Along with these facts, there may be advantageous incentives for U.S. adversaries 

to fight in cities.  As a recent RAND study states, many potential adversaries believe that 

the American public has an antiseptic view of war, with an unrealistic expectation that it 

can be waged with minimal casualties.  The recent victory of Operation Allied Force in 

Serbia was achieved without a single combat casualty.  Adversaries believe that the U.S. 

public's misplaced confidence in high-technology weapons increase our sensitivity to 

casualties.  This sensitivity is viewed as a liability, because the infliction of a sufficient 

number of American casualties has a potential to undermine domestic political support of 

military action [Ref 1: p. 2].   

B. THESIS PURPOSE 

The rise in importance of urban operations has spurred an interest within the DoD 

in evaluation of U.S. forces ability to operate in this setting.  This has caused the 

development of new tactics and doctrine and the creation of models and simulations that 

accurately depict urban operations.  The Applied Physics Laboratory (APL) at Johns 

Hopkins University has recently held working groups discussing urban operations and 

simulation.  My thesis tour was spent at APL researching several aspects of urban 

operations.  One area that needed to be addressed was Marine Corps assault support 

operations.  This thesis will model and conduct analysis on rotary wing (RW) operations 

in urban combat.  Focus will be given to aircraft survivability to evaluate varying tactics 

to aid in development of Marine Corps RW Tactics, Techniques and Procedures (TTPs). 

C. URBAN OPERATIONS 

1. Urban Combat 

Marine Corps Warfighting Publication (MCWP) 3-35.3, Military Operations on 

Urbanized Terrain, defines MOUT as "all military actions planned and conducted on a 

topographical complex and its adjacent terrain where manmade construction is the 

2 
 

 



dominant feature.  It includes combat in cities, which is that portion of MOUT involving 

house-to-house and street-by-street fighting in towns and cities." [Ref 4:  p. 1-2]   

The urban environment differs greatly from that of an open battlefield.  It is a far 

more complex network of buildings, roads and subterranean features.  The battlespace is 

divided into four basic levels:  buildings, street, subterranean and air.  Of these levels 

there are seven common characteristics:  population density, urban area size, street 

patterns, structural density, urban patterns, building construction and features of special 

consideration. Most operations will include fighting on all levels simultaneously.  

Fighting in the city increases the difficulty of operations being conducted by an offensive 

force.  Distances become compressed, making it more difficult to engage with standoff 

weapon systems and increasing the likelihood of fratricide or collateral damage.  Combat 

operations also require a vast amount of resource expenditure to include personnel, 

ammunition and supplies.   

Combat operations in an urban environment are conducted in five phases: 

preparation, isolation, penetration, exploitation and consolidation/transition.  They are 

infantry-intensive and require precise coordination of combined arms.  There is not 

necessarily a distinct transition point between phases.  One phase may instead fade into 

the next [Ref 5:  p.7].   

2. U. S. Marine Corps Structure 

The Marine Corps organizes its operational forces as Marine Air Ground Task 

Forces (MAGTF) for the purpose of providing a task-organized, self-sustaining, 

multipurpose expeditionary force capable of responding to a wide range of missions.  The 

MAGTF is a balanced, air-ground combined arms mix of forces under a single 

commander.  It is the Marine Corps' principal organization for all missions across the 

range of military operations.  All MAGTF's are task-organized and vary in size and 

capability according to the assigned mission. 

All MAGTF's are composed of four core elements: a command element (CE), a 

ground combat element (GCE), an aviation combat element (ACE) and a combat service 

support element (CSSE).  MAGTF's are categorized into three types: a Marine 

Expeditionary Force (MEF) (division/wing), a Marine Expeditionary Brigade (MEB) 
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(regiment/group) and a Marine Expeditionary Unit (MEU) (battalion/squadron).   The 

size of these categories can vary, but are generally of the size indicated in parentheses.   

The scenario for this thesis will involve the use of an ACE from a Marine Expeditionary 

Unit. 

3. Assault Support Operations in Urban Terrain 

Typical missions associated with MOUT range from Military Operations Other 

Than War (MOOTW) such as non-combatant evacuation operations (NEO) and 

humanitarian aid to sustained combat operations.  The ACE of the MAGTF will be 

expected to support the ground force scheme of maneuver throughout the operation.  

Assault support missions are those that use aircraft to provide tactical mobility and 

logistic support for the MAGTF, the movement of high priority cargo and personnel 

within immediate area of operations, in-flight refueling, and evacuation of personnel and 

cargo [Ref 6:  p. C-3].   

In its support of the GCE, the ACE may be called upon to perform missions such 

as tactical insertion of ground forces and cargo, direct action, combat resupply and 

tactical recovery of aircraft and personnel (TRAP).  In the end, the ground tactical plan 

will drive the assault support mission.    

D. JCATS 

For this thesis we used the Joint Conflict and Tactical Simulation (JCATS) 

combat model to run all simulations.  Used throughout the DoD and other U.S. 

government agencies, JCATS was developed by Lawrence Livermore National 

Laboratory for combat and conflict training, exercises, analysis, experiments and 

rehearsals.  It evolved from a merger of the Joint Tactical Simulation (JTS) and the Joint 

Conflict Model (JCM).  JCATS is a multi-sided, high resolution, entity level, combat 

simulation model.  JCATS can model strategic through tactical levels across the broad 

spectrum of war, from Joint Task Force head-to-head engagements to individual conflicts 

in Operations Other Than War (OOTW) [Ref 7:  p. 5]. 

The high-resolution nature of JCATS allows the user or analyst to control the 

inputs and actions for individual systems in a scenario.  The model also allows forces to 

be aggregated into units or combat organizations for easier control.  The user directs 
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movement and activities of the systems and units under his control through the model 

environment with pre-planned or real-time routes.  The environment for the model 

consists of a terrain file that can be created from elevation data obtained from the 

National Imagery and Mapping Agency in the form of digital terrain elevation data 

(DTED) [Ref 7:  p. 6]. 

Some important capabilities of JCATS include: 

• Amphibious landing and submarine play 

• Four levels of acquisition (capable of airborne IFF) 

• Three dimensional solid buildings modeled as objects on the terrain 

• Movement and conflict in and around buildings 

• Cover and concealment near buildings 

• Mount/dismount of airplanes/helicopters 

• Night operations 

• Precision guided weapons with laser spotting 

• Subterranean features  

These JCATS features, paired with appropriate technical data and tactical inputs, 

can be combined to simulate operations and tactics of a given force. 
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II. SCENARIO DEVELOPMENT 

A. BACKGROUND 

Much of the analysis on urban operations within the Marine Corps is conducted 

by the Marine Corps Warfighting Lab (MCWL).  The MCWL was created in 1995 and 

tasked with improving current and future Naval expeditionary capabilities.  The lab 

developed an initial three-phase, five-year experimentation plan beginning in 1996.  The 

first phase, Hunter Warrior, examined operations on dispersed, non-contiguous 

battlespace.  The second phase, Urban Warrior, examined TTPs and emerging 

technologies that might be used in urban environments.  In the third phase, Capable 

Warrior, experimentation was focused on expeditionary operations in the littorals and 

examined some of the challenges associated with Operational Maneuver from the Sea 

(OMFTS) [Ref 8:  p. 2]. 

As part of Capable Warrior, a battalion level experiment was conducted in 

February of 2001 called Project Metropolis (ProMet) at the former George Air Force 

Base in Victorville, California.  Experiment focus areas included tactics, training, combat 

service support, casualty collection treatment, and evacuation and rotary wing operations.  

Rotary wing experimentation objectives were to assess and evaluate urban Close Air 

Support (CAS) TTPs, aircrew target identification, urban suppression of enemy air 

defense (SEAD) TTPs, effectiveness of current tactics against man-portable air defense 

systems (MANPADS) and survivability of assault support helicopter lifts.  As a result of 

this exercise a considerable amount of information was gained regarding rotary wing 

operations, but due to weather cancellations the assault support infantry company lifts 

were not conducted.  The scenario developed for this thesis will try to give insight into 

the questions of rotary wing assault aircraft survivability by analyzing the factors that 

influence it [Ref 9:  p. 46]. 

B. U. S. MARINE CORPS ROTARY WING AIRCRAFT 

This thesis will involve the modeling and simulation of Marine Corps rotary wing 

aircraft involved in assault support operations.  The following paragraphs give a 

summary of the four aircraft used in this simulation, their roles and missions. 
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1. CH-53E Super Stallion 

The CH-53E, the Marine Corps' heavy lift helicopter (Figure 1), provides assault 

helicopter transport of heavy weapons, equipment, personnel and supplies in the initial 

waves of amphibious operations and subsequent operations ashore.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  CH-53E Super Stallion inserts NATO ground forces into urban LZ 

 

Some of the main missions for the CH-53E include providing combat assault 

transport of heavy weapons, equipment and troops, TRAP for downed aircrew and 

equipment, providing assault support for evacuation operations and other maritime 

special operations and providing support for mobile forward arming and refueling points 

(FARPs). 

2. CH-46E Sea Knight 

The Marine Corps' medium lift helicopter, the CH-46E (Figure 2) provides assault 

transport of combat troops in the initial assault waves and follow-on stages of amphibious 

operations and subsequent operations ashore. 
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Figure 2.  CH-46E Sea Knight conducting fastrope operations in urban setting 

 

The major tasks for the CH-46E are to provide combat assault troop transport, 

conduct assault support evacuation operations and other maritime special operations, and 

provide support for mobile FARPs. 

3. AH-1W Cobra 

The AH-1W (Figure 3) provides attack helicopter fire support and fire support 

coordination during amphibious operations and subsequent operations ashore.  The 

primary tasks for attack helicopters is to provide fire support and security for forward and 

rear area forces, point-target and anti-armor operations, and anti-helicopter operations; 

provide armed escort, plus control and coordination for assault operations; 

controlling/coordinating and providing terminal control for supporting arms, including 

CAS, artillery and Naval Gunfire (NGF); and conducting armed and visual 

reconnaissance. 
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Figure 3.  AH-1W Cobra 
 

4. UH-1N Huey 

The UH-1N (Figure 4) provides combat utility helicopter support and fire support 

coordination during amphibious operations and subsequent operations ashore.  The 

primary tasks of the utility missions include providing an airborne command and control 

platform for the command element, providing armed escort for assault support 

operations, airborne control and coordination for assault support operations, conducting 

combat assault and assault support for evacuation operations and other maritime special 

operations, and controlling, coordinating and providing terminal control for supporting 

arms. 
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Figure 4.  UH-1N Huey 
 

C. EXPERIMENTAL TACTICS 

Urban terrain offsets many of the strengths in the U.S. doctrinal warfighting 

capabilities.  The effectiveness of satellites and reconnaissance assets appear to be 

severely reduced in the dense clutter and density of urban terrain.  Firepower inflicts 

collateral civilian casualties and crumbles the infrastructure.  The rubble in turn prevents 

rapid maneuver and affords the defender increased protection.  Messy and chaotic, urban 

warfare is far from the long-range precision weapon engagements of Desert Storm.  In 

the city, engagement distances are compressed and identification of friend from foe and 

non-combatant is inherently difficult [Ref 8:  p. 6]. 

In the urban environment the squad leader often becomes the basic maneuver 

element and the lowest level battle leader with the ability of independent operations.  

Emphasis will be given to the squad leader as the tactical decision maker.  The MCWL 

has developed several new tactical concepts for use in the urban battlespace.  All are 

based on the precepts of maneuver warfare and seek to explore the potential utility of 

dispersed, non-linear operations.  The paragraphs below describe the tactical concepts of 

Urban Penetration, Urban Thrust and Urban Swarm. 
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1. Urban Penetration 

This tactic involves a force entering the urban battlespace from a safe haven to an 

objective within the city.  It is designed for operations against clearly defined objectives, 

either enemy or terrain.  Focus will be given to quickly maneuver to the objective and 

establish control in a dispersed and non-contiguous battlefield.  The avenues of approach 

between the safe haven and objective are only controlled during the passage of the force.   

Upon arrival at the objective area the force must move directly into the attack.  After 

seizing the objective the force must then isolate and defend it.  The forces involved in the 

penetration must have skills necessary to make opposed movement to the objective, 

attack, seize and conduct then conduct immediate defense. 

Attacks will occur on multiple axes of advance by dispersed units.  Isolation and 

defense of the objective will require the ability to protect against enemy forces as well as 

non-combatants.  A withdrawal may be planned, but not required, and could be 

considered as a transition to a second objective. 

2. Urban Thrust 

This is a tactical concept that focuses an attack on the enemy on a narrow axis of 

advance.  As the attack occurs the axis of advance is defended to refuse the flank to the 

enemy.  This is accomplished by forces, sensors and barriers.  It can be conducted along 

multiple axes that are mutually supporting and on an oblique axis to the street to avoid 

exposure.  Periodic shifts in advance direction can be used to confuse the enemy and 

avoid patterns.  The intent is to avoid linear attacks, deceiving the enemy and disguising 

the true nature of the attack.  

3. Urban Swarm 

The urban swarm tactic involves numerous fireteam and squad-sized units 

operating in a dispersed, non-contiguous manner.  The units patrol their assigned areas 

and are continuously prepared to rapidly respond to calls for assistance by other patrol 

teams.  Responses are made by either the closest unit or by those units given direction by 

higher authority.  The key to this tactic is speed and flexibility.  Implicit in this concept is 

the need for junior leaders to take on greater levels of responsibility and command. 
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D. URBAN ROTARY WING OPERATIONS 

 The MAGTF may be tasked with conducting numerous urban missions.  These 

may include offensive/defensive combat operations, non-combatant evacuation 

operations, hostage recovery, tactical recovery of aircraft and personnel, airfield seizure, 

humanitarian assistance or show of force.  Ultimately the ground tactical plan will drive 

the assault support mission.  For offensive combat operations, mission planning will 

begin and be focused on the METT-TSL factors.  Decisions will be made to determine 

routing, landing zones (LZ), altitude, airspeeds and other flight profile factors.   For large 

troop lifts (company size or larger) the size of the flight will also impact on the tactics 

that are chosen.  Appendix A shows the Assault Support Decision Matrix that can be used 

for selection/rejection of a course of action (COA) for an assault into urban terrain.  The 

paragraphs below briefly discuss the major planning issues associated with assault 

support missions. 

1. Routing 

The threat is the biggest driving force in route selection.  Routing is selected to 

ensure the greatest element of surprise, ease of navigation, and avoidance of (or cover 

from) possible threat locations.  METT-TSL dependent, tactical dispersion of the flight 

may require small flight elements vice a single large flight.  This may be coordinated 

through time, space and altitude deconfliction to a single LZ or to multiple LZs. 

2. Altitude and Airspeed 

Like route selection, threat is the driving factor to altitude and airspeed 

requirements.  Automatic weapons, light AAA and MANPADS are usually the primary 

threat in an urban environment.  The general rule is to maintain airspeeds greater than 60 

knots and altitudes just above the height of obstacles.  Higher airspeeds allow for the 

minimization of exposure time.  Terrain flight techniques will consist of low level and 

contour techniques.  Higher airspeeds and lower altitudes result in lower reaction time 

and reduced situational awareness (SA).  Ease of navigation, SA and reaction time must 

all be weighed against the mission and threat.  If the threat is primarily small arms and 

RPGs an altitude of 1500 feet AGL is preferred. 
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3. Landing Zones 

The mission and the GCE requirements will primarily dictate LZ choice.  

Consideration will be given to ease of recognition, ambush potential and distance from 

objective.  Stadiums and rooftops are potential zones, but steeper approaches, slower 

airspeeds, manmade obstacles, and increased exposure time must be weighed against 

landing zone benefits.  Initial Terminal Guidance (ITG) provides terminal control for 

helicopters in and around LZs.  Whenever possible, consideration should be given to 

provide some sort of ITG whether it be IR strobes, chemlights, laser or some other 

technique. 

E. THESIS OBJECTIVES 

This thesis contributes towards the development of Marine Corps urban rotary 

wing TTPs by modeling and analysis of these operations.  The thesis objectives include: 

 Evaluate rotary wing survivability in an urban environment. 

 Determine major factors that impact on survivability. 

 Evaluate effect of urban SEAD on RW survivability. 

 Give insight into development of doctrine and TTPs for urban RW 
operations. 

 Evaluate JCATS as an urban operations modeling tool. 
 

F. THESIS SCOPE 

This thesis develops a scenario to model rotary wing operations in an urban 

environment using the JCATS combat model.  Focus is placed on determining and 

evaluating the factors that have the greatest influence on survivability.  Urban rotary wing 

operations are very complex and involve many variables, situations and factors.  

Emphasis is placed on a combat scenario that simulates company-size tactical insert of 

troops to an urban objective (Urban Penetration).  The scenario also involves assumptions 

about the forces involved.  These include, but are not limited to, types of urban terrain, 

enemy and friendly force structure, tactics, capabilities and intelligence.  Full scenario 

development and assumptions are discussed in Chapter III.  The analysis includes the use 

of quantitative MOEs that assess overall survivability of rotary wing aircraft in an urban 

setting, which are discussed in Chapter IV. 
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Consideration has been given to the validity of the combat model and its depiction 

of rotary wing operations.  Qualitative analysis will be made to conduct a face validation 

of the simulation output [Ref 10:  p. 34].  Chapter IV includes a discussion of validation 

requirements involved with a combat model; however, a full validation of the JCATS 

combat model is not within the scope of this thesis. 
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III. MODEL DISCUSSION 

A.  SCENARIO 

The combat scenario for this thesis will involve an infantry company conducting 

an Urban Penetration into a hostile city in order to seize and defend the objective until 

follow-on forces arrive.  The insertion will be completed by MAGTF RW assets.  This 

scenario is typical of a mission that a MEU would be called upon to execute.  The 

scenario was generated by the author, but is similar to the urban penetration missions 

executed in the ProMet exercise mentioned in Chapter II.  Details for the scenario are 

described below. 

1. Situation 

Recent economic and political instability in the country of Red has led to social 

uprising and creation of Red rebel forces known as the Red Liberation Front (RLF).  A 

recent rise in tensions led to the seizure of the U. S. Embassy Compound in the city of 

Jabal by approximately 30 well-armed RLF members.   

Since the tensions have been rising for some time, the 29th MEU (SOC) was 

offloaded in the neighboring county of Orange to conduct training and respond to any 

potential hostilities.  The NCA has tasked the MEU with seizing the Embassy Compound 

and defending until follow-on forces arrive and stabilize the situation. 

2. U. S. Forces 

The U. S. forces for this scenario are represented as the Blue side in the 

simulation.  The Blue force includes assets that are typical of a forward-deployed 

MEU(SOC).  The forces utilized in the simulation are rotary wing composite squadron, a 

Light Armored Reconnaissance (LAR) company and one infantry company (Alpha).  The 

composite squadron consists of 12 CH-46Es, four CH-53Es, four AH-1Ws and two    

UH-1Ns.  The LAR company consists of 12 LAVs, and Alpha Company is comprised of 

110 Marines.  Alpha Company will be deployed aboard the RW aircraft.  In addition to 

these forces, a Marine scout/sniper team will be used, consisting of four Marines. 
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3. Red Forces 

The RLF forces are represented by the Red Side in the simulation.  The forces 

involved in the taking of the U. S. Embassy are comprised of 54 rebels.  The RLF 

typically operate in squad-sized elements.  They are armed with former Soviet weapons 

including AK-74s, RPG-16s, AT-4s, SA-14s, and SA-16s.  The RPG-16 and AT-4 are 

anti-tank/armor weapons, but can and have been used against RW aircraft.  The SA-14 is 

a second generation Infrared (IR) MANPAD.  The SA-16 is a third generation IR 

MANPAD with greater range and capability than the SA-14.  Both of these weapons are 

primary threats to RW aircraft.  Rebel platoons are composed of three of these squads.  

Each squad consists of nine soldiers, for a total of 27 rebels per platoon.  A single platoon 

is located at the Embassy Compound. 

In addition to the forces occupying the embassy compound, there are some rebel 

factions operating in squad-sized elements in the surrounding blocks of the city. There is 

also one ZPU-4 Anti-Aircraft Artillery (AAA) piece (14.5mm) located on a rooftop 

approximately 600 meters to the east of the objective. 

4. Scheme of Maneuver 

The countries of Orange and Red can be seen in Figure 5.  The Blue Forces are 

located at the airfield in the western sector of the map in the Country of Orange.  At H-

Hour, the LAR company will proceed enroute to the city of Jabal and conduct a feint on 

the eastern side of the city; this will draw forces away from the western side of the city 

where Alpha Company will be inserted by helicopter.  The helicopter lift consists of eight 

CH-46Es and four CH-53Es.  Escort will be provided by four AH-1Ws, and a single   

UH-1N providing command and control (C2).  Figure 5 highlights the objective area and 

outlines the aircraft routing into the objective. 

The embassy compound is located in the western sector of the city of Jabal.  

Three LZs have been identified for use in the assault; LZs Crow, Eagle and Hawk.  The 

compound itself consists of five buildings, all of which are two and three stories.  Alpha 

Company will attack and seize the compound.  Once a defensive perimeter has been 

established, the LAR company will proceed to the objective, linkup with Alpha 

18 
 

 



Company, and defend the Embassy until follow-on forces arrive and stabilize the 

situation.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Overview map of Objective Area 
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A few steps were taken in order to simplify the simulation.  We were not 

concerned with modeling the mechanized forces route of travel, so in order to shorten the 

simulation, the LAR company was initially positioned at the western side of Jabal at the 

sight of their feint.  Since there was no threat enroute to their objective, this has no effect 

on the overall results of the simulation.  Helicopter lifts commenced at the beginning of 

the simulation. Finally, the ground scheme of maneuver was played out for 15 minutes 

after the initial insertion of troops. 

Figures 6 and 7 show detail of the objective area.  Figure 6 outlines the overall 

scheme of maneuver for the simulation scenario.  Figure 7 displays the embassy 

compound and adjacent LZs, and is a graphic from the JCATS simulation display.  Figure 

7 is a blow-up of the western sector of the objective area shown as the boxed region in 

Figure 6. 
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Figure 6.  Objective Area 
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Figure 7.  Objective Area LZs 
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B. FACTORS AFFECTING ROTARY WING SURVIVABILITY 

The major factors that influence an assault support mission in an urban 

environment were developed and further defined for purposes of analysis of the 

simulation.  The factors discussed are not an exhaustive list and the author realizes that 

others could be developed that can contribute to RW survivability.  The factors described 

below are the major considerations involved with mission planning of RW operations and 

can be modeled and analyzed within the scope of this thesis.  A total of eleven factors 

were developed, though some are fixed at an assumed level for reasons described below. 

1. Urban Terrain Type 

Urban areas can range from a small strip of buildings to major metropolitan cities.  

Size, street patterns, and building features will impact on a forces ability to operate in this 

setting.  Urban areas are generally described by seven common characteristics that effect 

military operations:  population density, urban area size, street patterns, structure density, 

urban patterns, building construction and features of special consideration.   

The predominant urban terrain for this simulation is low-rise building structures, 

typically three stories in height.  Construction is wood frame and masonry-type.  The 

streets are planned, irregular pattern with widths that vary from ten to twenty meters in 

width.  The urban pattern can best be described as a segmented pie structure extending 

outward from the main city center near the embassy.  Population is estimated at 

approximately 30,000.  These features will remain constant throughout, as creating 

terrain files is quite labor intensive and experimenting in different urban types is beyond 

the scope of this thesis.    

2. Mission Profile 

There are numerous mission profiles that could possibly be flown in an urban 

environment, from RW CAS to Humanitarian Relief resupply missions.  The profile will 

determine the amount of time spent over the city, which will have direct correlation to the 

aircraft's survivability.  For the purposes of this thesis, the mission profile will only 

include a RW assault troop insert in support of an Urban Penetration operation. 
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3. Time of Day 

Normally the Marine Corps will conduct combat operations during hours of 

darkness since our ability to operate at night far exceeds the capability of any of our 

potential adversaries.  Since this is an initial study however, we have held our missions to 

only be flown during daylight hours.  Future research could delve into JCATS night 

simulation features and conduct further analysis of night operations. 

4. Aircraft Routing 

When operating in an urban setting, consideration must be given to the size of the 

flight since larger formations require longer periods of time in the objective area, slower 

approaches into landing zones, larger LZs, and most likely the need for use of holding 

areas.  We are interested in the effect of using multiple avenues of approach into an 

objective area and how it will influence helicopter survivability.  This simulation utilizes 

one or three routes for the assault aircraft. 

5. Landing Zones 

The use of a single LZ into an objective area when inserting a large force usually 

requires multiple waves of aircraft, longer periods of time over hostile territory and 

allows the enemy to concentrate his forces on a single objective.  The use of multiple LZs 

in the objective area will be analyzed to determine its effectiveness.  Like routing, we 

will utilize one or three LZs. 

6. Altitude 

Altitude doctrine for urban operations is very well defined and has been 

developed from combat experience.  For the threat defined in our scenario, assault 

support aircraft would fly at altitudes of 200 feet and below. For both analyzing 

differences in altitude and determining simulation output validation, altitudes for the 

scenario will be run at 50 feet above obstacles and at 1500 feet above obstacles.   

7. Rotary Wing Escort 

There are two forms of rotary wing escort for assault support operations:  attached 

and detached.  Attached escort requires that escort aircraft fly with the assault flight into 

the objective area to provide fire support and protection from possible threats.  Detached 

escort involves RW escort assets ingressing via separate routing and being placed in 
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mutually supporting areas based on threat and response time.  With larger flights, 

multiple routes and limited escort assets, detached escort may be an option that is taken.  

Escort options for the scenario will be run with attached or detached escort. 

8. Urban SEAD 

Suppression of enemy air defenses (SEAD) is defined as activities that neutralize, 

destroy or temporarily degrade enemy air defenses in a specific area by physical attack 

and/or electronic attack [Ref 11:  p. 7-1].  The proliferation of MANPADS poses the 

greatest threat to aircraft in the urban environment.  SEAD can be accomplished by many 

platforms to include fixed wing assets, RW aircraft and GCE elements.  For the purposes 

of this thesis, SEAD will refer to the use of GCE recon scout/sniper teams located on 

rooftops near insert sites to provide cover for landing assault aircraft.  Normally they will 

be inserted several days to several hours prior to the assault, but for the ease of simulation 

they will be placed at covered positions at the beginning of the simulation.  They will be 

either present or not present to study their contribution to RW survivability. 

9. Enemy Tactics/Training 

The training level and ability of an enemy will affect the tactics that are 

employed.  A highly trained force will wait for the best opportunity to engage based on 

unit objectives.  A poorly trained enemy is unpredictable and will engage aircraft at every 

opportunity regardless of the unit's objective.  Often times this unpredictability will make 

the enemy more dangerous and harder to locate.  This scenario will assume an average 

training level of Red forces since simulating training levels can be significantly difficult. 

10. Enemy Location/Intelligence 

Correct intelligence on enemy location, size, composition, etc are key factors that 

drive mission planning and execution.  Accurate intelligence on adversaries is critical to 

mission accomplishment, but often times information is not known or is inaccurate.  This 

has a potential to negatively impact operations and can lead to increased casualties.  For 

the purposes of this thesis, intelligence will refer to the accuracy of known enemy 

locations and composition.  This will be assumed at a fixed level for this simulation. 

Intelligence information on enemy forces will be considered typical.  Accurate 
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information will be 'known' about the force at the embassy, but threats on the city streets 

outside the embassy will be 'unknown'.      

11. Enemy Force Size 

The size of the enemy force will obviously influence the size of the attacking 

force.  Traditionally, the attacker desires a minimum 3:1 force ratio.  Due to poor 

intelligence or unexpected reinforcement capability, this may not always occur.  This 

simulation will use both a 2:1 and 3:1 force ratio.  This will be useful in determining 

simulation output validity.  This will be accomplished by fixing the friendly force level at 

a single company and varying the enemy force level between one and two platoons (a 

total of 27 and 54 soldiers respectively). 

C. JCATS MODEL PARAMETERS AND CHARACTERISTICS 

Every JCATS scenario has a characteristics and a parameters file associated with 

it.  The characteristics file contains all the data that is associated with each individual 

entity in the simulation.  This includes weapons, munitions and sensor information as 

well as detailed information about the specifics of the system being modeled, as well as 

missions and targeting information. 

The parameter file contains data regarding variables that affect combat.  These 

include environmental settings, site objects and human factor options.  Each is discussed 

in detail below. 

1. Environmental Settings 

The environmental options allow for different weather effects to be set for a 

simulation.  These effects include visibility, wind, temperature, humidity and lighting 

conditions.  For this scenario weather conditions are set to a '9 kilometer day', 'clear' and 

'good'.  These are intended to simulate 9 kilometers of visibility, with clear skies, and 

good weather conditions.  The 'good' weather conditions allows for no degradation of 

mobility.  Set to different levels, this factor can degrade a system's mobility. 

2. Site Objects Setting  

The Site Object options allow for setting effects of barriers, bridges, buildings and 

breach/penetration.  The barriers option includes data that details distances at which 

barriers can be perceived.  The bridges and buildings options detail information on effects 
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of munitions on a particular structure, and the breach/penetration option contains data on 

time to breach/penetrate obstacles. 

3. Human Factors Settings   

This option contains information for setting a system's behavior under duress.  

These settings include fatigue and fratricide.  Fatigue computes the energy levels for 

individual dismounted systems based on activity level, combat stress, and training, and 

restricts activity if a system runs out of energy.  The Fratricide option determines the 

likelihood a system mistakenly targets friendly systems.  It includes data such as 

jumpiness (simulating an entity's nervousness and realized through degradation of 

weapon and system performance), fatigue, and identification and recognition information 

for targeting.  For simulation speed, ease of processing and data collection, these features 

were disabled. 

D.  MODELING ROTARY WING AIRCRAFT IN JCATS 

JCATS is an entity level constructive simulation, which defines an entity as a 

'system'.  Each system is comprised of weapon(s), munition(s) and sensor(s).  The 

weapon information includes data on weapon reliability, set up time, cycle rates and 

reload time.  Munitions information details standard ballistics information for munition 

type.  Sensor options detail type, range, field of view, reliability information and basic 

characteristics of the sensor. 

Each aircraft system is then assigned weapons, munitions and sensors as well as 

detailed information on aircraft mission, target classification, detectability, size, crew and 

behavior in the air.   Additional parameters are inputted for fuel and cargo capacity, fuel 

burn rates and, if applicable, whether the systems can transfer fuel (refueling aircraft).  
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IV. ANALYSIS METHODOLOGY 

A. DEFINITION OF SURVIVABILITY 

In order to conduct effective analysis on RW operations we must first define what 

we mean by survivability.  There could be some debate over the definition of 

survivability.  Some would say that the current trend to zero tolerance of casualties would 

lead to the requirement to operate in an environment unscathed.  This is unrealistic and 

for the purposes of this study, survivability will refer to the ability of rotary wing aircraft 

to operate effectively in an urban environment.  That is to say, the aircraft must be able to 

accomplish their mission.  To do this, enough assault aircraft must survive to be able to 

insert the ground force in sufficient numbers to enable the GCE to accomplish its mission 

and seize the objective.  This is defined as the GCE go/no-go criteria.  For our scenario 

the go/no-go criteria is 84 Marines in zone.  Each CH-46E carries 12 combat loaded 

Marines, while a CH-53E carries 24.  Therefore the go/no-go criteria can be stated as 

seven CH-46E equivalents in zone.     

B. MEASURES OF EFFECTIVENESS 

MOEs were developed within the framework of the thesis objectives:  evaluate 

RW survivability in an urban environment, determine which factors impact on 

survivability and give insight into the development of urban RW TTPs.  In order to 

evaluate RW survivability within the context of this simulation, we broke survivability 

down into two basic categories:  susceptibility and vulnerability.   Susceptibility refers to 

how well the aircraft are able to avoid detection and engagement by enemy forces.  

Vulnerability refers to how well the aircraft survive engagements.  The MOEs are 

developed in detail below. 

1. MOE 1:  Blue RW Detections 

This MOE will be used to determine the effectiveness of each of the factors on 

susceptibility.  JCATS models acquisitions at four levels:  detection, classification, 

recognition and identification.  Detection refers to when something has been spotted 

within a system's field of regard.  The classification level is reached when the general 

class of something has been determined, that is, a wheeled vehicle, an aircraft, etc.  
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Recognition occurs when the type of object has been determined, that is, a tank is a T-80, 

etc.  Identification level of acquisition is reached when the side of the system being 

acquired has been identified.  Targets will not be engaged until they have been acquired 

at the identification level.   Therefore we will measure the number of RW identifications 

made by the Red Force per mission. 

2. MOE 2:  Blue RW Kills 

To determine the effect of each of the factors on vulnerability, we will examine 

the number of blue RW kills per mission.  JCATS defines four types of kills:  mobility, 

firepower, mobility and fire power, and catastrophic.  The kills will be separated into 

assault kills (MOE 2A) and escort kills (MOE 2B).  Assault kills represent the number of 

CH-46E equivalents killed per mission to determine if GCE go/no-go was met.  Escort 

kills represent the number of AH-1W and UH-1N killed per mission and will reflect how 

well escort aircraft can operate in this setting. 

C.  FACTORIAL DESIGN 

To determine the factors influencing survivability we will use a factorial design.  

In a two-level factorial design experiment, two levels or settings are selected for each 

variable or factor.  Experimental runs are made with all possible combinations for a full 

factorial design.  These designs are useful because they require a few runs per factor and 

they can indicate major trends [Ref 12:  p. 306].  This scenario includes six of the factors 

mentioned earlier for evaluating RW survivability; altitude, number of routes, number of 

LZs, SEAD, type of RW escort and enemy force size.  Table 1 displays the levels for 

each of the design factors.  
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Design Factor Level 

Label Description - + 

A Altitude   

B Number of Routes 1 3 

C Number of LZs 1 3 

D SEAD Use Not Use 

E RW Escort Detached Attached 

F Enemy Force Size 27 (3:1) 54 (2:1) 

 
Table 1.  Levels of each Design Factor in the Experimental Design 

 

In 2k factorial designs the amount of experimental runs increases geometrically as 

k increases.  For our 26 design, a full factorial experiment would require 64 separate 

treatment runs.  However, when k is large enough the desired information can often be 

obtained by performing only a fraction of the full design [Ref 12:  p. 374].  Fractional 

factorial designs provide a good way to get estimates of main effects and two-way 

interactions at a fraction of the effort required by a full design [Ref 13:  p.  638]. 

We are primarily concerned with main effects which are defined as the average 

change in the response due to moving a factor from its "-" level to its "+" level while 

holding all other factors fixed.  However, if two or higher interactions appear to be 

present, the main effects cannot be readily interpreted as simply the effect of moving 

from a factor's lower level to its higher level [Ref 13:  p. 629].  Therefore, this will 
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require a resolution IV design.  "A design of resolution IV does not confound main effects 

and two-factor interactions with each other, but does confound two-factor interactions 

with other two-factor interactions." [Ref 12:  p. 385]  We have assumed that three-factor 

interactions are negligible, leaving two-factor interactions confounded with each other.  

Effects of the two-factor interactions can be determined for each of the pairs confounded.  

A 26-2 design is a Resolution IV design with a 1/4 fraction of the full 26 design.  Appendix 

B details the 26-2 design, displaying the factor levels for each of the required 16 treatment 

runs per replication, as well as the generator and confounding patterns [Ref 12:  p.  379-

383]. 

D. ANALYSIS OF VARIANCE (ANOVA) 

A multi-factor analysis of variance will be conducted to test whether each factor, 

or treatment effect, on the response is significant.  The model that describes our response 

variable is the sum of the grand mean ( µ ), treatment effect i ( iτ ) and an error term ( ijε ), 

depicted below: 

yijk = iji ετµ ++  

where  

  yijk = response observation of treatment i, replication j and run k 

 =µ true mean 

 =iτ  treatment i effect i = 1,...,6 j = 1,...,10 

ijε = error term  k = 1,...,16 

For our model we have six factors, 16 treatments and 10 replications of each of 

the 16 treatments [Ref 14:  p. 456].  The ANOVA for our model tests six (total number of 

factors) separate hypotheses; Ho:  =iτ  0, that is, factor i has no effect on the response.  

The alternative hypothesis being; Ha : ≠iτ  0, factor effect i has a significant effect on the 

response [Ref 14:  p. 424]. 

 The ANOVA calculates the mean square for treatment (MSTr) and the mean 

square for error (MSE).  The statistic f = MSTr/MSE is then calculated.  When the null 

hypothesis is true, E(MSTr) = E(MSE) = , where as when the null hypothesis is false, 

E(MSTr) > E(MSE) = .  That is, both of the statistics are unbiased estimators of the 

2σ
2σ

30 
 

 



common variance when Ho is true, but MSTr overestimates  when H2σ o is false [Ref 13:  

p. 396].  When Ho is true the test statistic f has an F distribution.  Thus a significance 

level can be calculated to determine if each factor has a significant affect on the response.  

(rejection region;  f ≥  ) 2,1, νναF

E. MODEL VALIDITY 

One of the objectives of this thesis is to conduct a face validation of the 

simulation output of our scenario.  Army Pamphlet 5-11, Verification, Validation and 

Accreditation of Army Models and Simulations, defines validation as "...the rigorous and 

structured process of determining the extent to which an M&S accurately represents the 

intended real world phenomena from the perspective of the intended use of the M&S."  

[Ref 10:  p. 30]  

There are two components to validation:  structural and output.  Within each of 

these two components there are methods by which to conduct the validation.  The 

analysis conducted for this thesis will focus on output validation.  Output validation seeks 

to find the answers to the following questions: 

• Does the Model and Simulation (M&S) produce results that are feasible? 

• Is the result reasonable relative to the inputs? 

• Does a difference in input produce the expected proportional change in the 

output? 

The methods are the means to which validation is measured.  For the purpose and scope 

of this thesis, a face validation will be used to evaluate the model.  A face validation is 

the method of determining if at the surface the model seems reasonable and results are 

within the realm of possibility.  It is conducted by personnel that are knowledgeable or 

considered subject matter experts about the system(s) being modeled.  It is considered a 

point of departure from which to conduct more thorough validation analysis [Ref 10:  p. 

35-36]. 

 For our analysis, we will make qualitative assessments of the output generated by 

the scenario.  Focus will be given to RW kills, casualty rates, realism of shots taken and 
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movement rates of forces.  We hope to achieve an overall evaluation of the JCATS model 

as a tool for modeling urban combat. 

F.  DATA COLLECTION 

JCATS simulation runs generate three files of output data.  These data files can 

then be used by the JCATS Analyst Workstation to generate appropriate files for the data 

that is desired.  The Analyst Workstation converts the original three output data files into 

useable output and then generates several files and reports.  Some of these files include 

acquisitions, direct fire shots, direct fire effects, direct fire kills, artillery kills and so 

forth.  For the purposes of our analysis three of these files were used:  acquisitions, direct 

fire effects and direct fire kills.  The acquisition files contain data on the system being 

acquired, the system acquiring, level of detection, location and force organization 

information.  The direct fire effects file includes information on each shot taken by each 

side, type of kill (or miss), target, shooter and range of shot.  Finally, the direct fire kills 

file contains data on target system killed, shooter and total kills of that system type. 

These three files were downloaded, imported into Excel, reduced into a usable 

format and consolidated.  The resulting Excel data files were then imported into S-Plus 

for analysis.  
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V. RESULTS 

A. ANALYSIS PROCEDURE 

Ten replications of the 16 treatments (160 total runs) were conducted to generate 

enough response observations for each MOE to ensure accurate determination of factor 

effects.  The raw results were analyzed using multi-factor ANOVA in S-Plus.  The raw 

results are included in Appendix C.  The ANOVA was conducted on all MOE response 

variables.  The results are summarized below.  A pre-determined significance level of 

α = .05 was set. 

B. MOE 1:  BLUE RW DETECTIONS 

1. Factor Significance 

The ANOVA results from the Blue RW level 4 detections are shown in table 2. 
ANOVA 

(Response Variable:  Blue RW Detections) 
 
          Df  Sum of Sq   Mean Sq   F Value     Pr(F)  

            Alt   1   138650.6    138650.6  54.1660     0.0000000 
           Rtes   1   35343.0      35343.0  13.8073     0.0002878 
            LZs   1   45900.6      45900.6  17.9318     0.0000403 
           SEAD   1   11323.2      11323.2   4.4236     0.0371606 
         Escort   1    1677.0       1677.0   0.6552     0.4195928 
     Enemy.Size   1  309936.0     309936.0 121.0812     0.0000000 
       Alt:Rtes   1    9579.0       9579.0   3.7422     0.0549887 
        Alt:LZs   1   10465.2      10465.2   4.0884     0.0450051 
       Alt:SEAD   1   10080.6      10080.6   3.9381     0.0490771 
     Alt:Escort   1   12709.2      12709.2   4.9651     0.0273933 
 Alt:Enemy.Size   1    8614.2       8614.2   3.3653     0.0686200 
      Rtes:SEAD   1      21.0         21.0   0.0082     0.9279111 
Rtes:Enemy.Size   1    6943.2       6943.2   2.7125     0.1017171 

 
Residuals 146  373721.7       2559.7   
 

Main Effects 

 Effects    se  
       Alt  58.875    8.403 
      Rtes -29.725    8.403 
       LZs -33.875    8.403 
      SEAD -16.825    8.403 
    Escort   6.475    8.403 
Enemy.Size  88.025    8.403 
 

Interactions 

                    Effects  
         Alt:Rtes   -15.475     
          Alt:LZs    16.175     
         Alt:SEAD    15.875     
              Alt:Escort    17.825     
   Alt:Enemy.Size   -14.675     
        Rtes:SEAD    -0.725     
  Rtes:Enemy.Size    13.175     

Mean: 383.7125     Standard Error: 5.656564 

  

Table 2.  ANOVA Results for Blue RW Detections 
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All main effects are significant except for Escort.  Both Altitude and Enemy Size 

dominate in the model with MSEs greater by several order of magnitude than the other 

factors, though Number of Routes and LZs are highly significant.  SEAD is found to be 

significant, but not a dominating factor.  Escort is found to be insignificant.  This can be 

attributed to the fact that regardless of the type of escort provided, once in the objective 

area, where the detections occur, tactics and procedures are the same.  Figure 8 depicts 

the effects of each factor on the mean response. 
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Figure 8.  Factor Effects on Mean Blue RW Detections 

  

Both Altitude and Enemy Size significantly increase the number of detections 

when moved from their lower levels to higher levels.  These are not surprising results and 

are intuitively expected.  This will be addressed further in the face validation discussion.  

Of note, both Number of Routes and Number of LZs significantly decreased the number 

of detections when increased to three.  SEAD had a small effect on detections, which 

indicates a suppression effect was increased when SEAD was added. 
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The significant two-way interactions are all those that involve Altitude.  Table 3 

shows the effect of the Altitude and Number of LZs interaction on the mean number of 

detections.  All figures displayed are the mean number of detections made per mission.  

When Altitude is set at its lower level the mean response is less than the grand mean, no 

matter what level the LZ factor is set.  This demonstrates how dominant the Altitude 

factor is in this model.  The same effect is present in both the Altitude:SEAD and 

Altitude:Escort two-way interactions. 

   

422.0                                                                          404.30 

mean = 383.7125 

379.30                                                                         329.25 

               1500 (+) 

                 Alt 

                50 (-) 

1 (-)                          Number of LZs                              3 (+) 

Table 3.  Two-way interaction effect of Altitude and LZ on mean Blue Detections 

 

2. Analysis of Model Assumptions 

The ANOVA model makes the assumptions that errors are normally distributed, 

with common variance and mean of zero [Ref 14:  p.  393].  To ensure our ANOVA 

results are valid we must check each of these assumptions.  Results will also be analyzed 

to check for outliers that may impact on our results.   

Figure 9 depicts a qq-plot of the residuals.  It indicates a distribution close to 

normal, but with a heavy left tail, indicating a positive skew.  This is confirmed with a 

box-plot of residuals for each factor level in figure 10.  The median is slightly higher than 

zero for several of the factors and positive outliers. 
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Figure 9.  QQ-plot of residuals from Blue RW Detections Response 
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Figure 10.  Box-plot of factor levels vs residuals from Blue RW Detections Response 
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Figure 11 depicts a plot of the residuals (not standardized) versus the fitted values, 

which will help in diagnosis of common variance.  If homoscedasticity exists, the plot 

will resemble a random plot of points.  Our plot shows a stratified structure.  This is due 

to the discrete value of the response variable between 200 and 600 detections.  Each line 

represents a common treatment run.  The data throughout are fairly evenly distributed, 

though there is a wider spread at the high end, due to the seven possible outliers (circled 

in red) when Altitude and Enemy Size were set at their high levels. 
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Figure 11.  Plot of Fitted values versus Residuals for Blue RW Detections 

 

Figure 12 shows a plot of Cook's distance which helps to identify outliers.  Cook's 

distance is a measure of influence on the model as a whole.  It will identify points of high  

leverage, the potential for influence resulting from unusual response values.  A Cook's 

distance greater than 1 is considered influential [Ref 15:  p.130].  All values are below .1, 

with the highest just above .08.  These points appear to be outliers from the residual vs 

fitted plot (Figure 11) since they lie a greater distance from the mean.   
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Figure 12.  Plot of Cook's distance for Blue RW Detections  
 

The Cook's distance plot demonstrates they do not wield significant influence 

over the model.  There are three points that have potential to be points of high influence.  

Point 147 from the figure is from treatment run 3 with levels at low altitude and high 

enemy size with a value of 612 detections (high).  Points 4 and 36 are both from 

treatment run 4 with levels set at high altitude and high enemy size.  Point 4 has a value 

of 292 detections (low) and point 36 has a value of 591 (high).  These points differ from 

the mean value more than other responses, but are not beyond an acceptable range given 

the tactical circumstances. 

Overall, the model meets all the assumptions of ANOVA.  The residuals have a 

distribution close to normal with common variance and a mean of essentially zero.  There 

is some positive skew do to some high observations, but no single point exerts excessive 

leverage. 

C. MOE 2A:  BLUE RW ASSAULT KILLS 

1. Factor Significance 

The ANOVA results for Blue RW Kills are shown in Table 4.  Altitude, SEAD 

and Enemy Size are the only significant factors for main effects.  Again Altitude and 

Enemy Size are the dominating factors.  SEAD was determined to be highly significant 

for this MOE.  A surprising result is that the Number of Routes and Number of LZs were 

found to be insignificant.  In fact, increasing the number of both routes and LZs increased 
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the mean number of Blue RW assault kills.  This may be due to the fact that when a 

single LZ was used, friendly fire power was far more concentrated and combat power 

was built up at a significantly higher rate. 

 

ANOVA 
(Response Variable:  Blue RW Assault Kills) 

 
           Df  Sum of Sq   Mean Sq      F Value       Pr(F)  

       Altitude    1   46.225     46.2250      27.43156      0.0000006 
    # of Routes    1    0.900      0.9000       0.53409      0.4660627 
       # of LZs    1    1.225      1.2250       0.72696      0.3952673 
           SEAD    1   15.625     15.6250       9.27243      0.0027606 
         Escort    1    2.500      2.5000       1.48359      0.2251786 
     Enemy.Size    1   96.100     96.1000      57.02916      0.0000000 
       Alt:Rtes    1    1.225      1.2250       0.72696      0.3952673 
        Alt:LZs    1    3.600      3.6000       2.13637      0.1459911 
       Alt:SEAD    1    1.600      1.6000       0.94950      0.3314591 
     Alt:Escort    1    0.625      0.6250       0.37090      0.5434621 
 Alt:Enemy.Size    1   38.025     38.0250      22.56539      0.0000048 
      Rtes:SEAD    1    0.225      0.2250       0.13352      0.7153357 
Rtes:Enemy.Size    1    2.500      2.5000       1.48359      0.2251786 
 
 
      Residuals  146  246.025     1.6851         

Main Effects 
 
       Effects      se  

       Alt  1.075  0.21911 
      Rtes   0.150  0.21911 
       LZs   0.175  0.21911 
      SEAD  -0.625  0.21911 
    Escort   0.250  0.21911 
Enemy.Size   1.550  0.21911 
 

Interactions 
 

            Effects 
       Alt:Rtes    0.0175    
        Alt:LZs   -0.30      
       Alt:SEAD    0.2      
     Alt:Escort   -0.125           
 Alt:Enemy.Size    0.975  
      Rtes:SEAD   -0.075           
Rtes:Enemy.Size    0.25 
    

mean: 1.85  Standard Error:  0.1451337 

Table 4.  ANOVA Results for Blue RW Assault Kills 
 

Figure 13 depicts the factor effects on the mean response of Blue RW Assault 

Kills.  The dominance of both Altitude and Enemy Size can clearly be seen.  Escort was 

found to be insignificant along with Routes and LZs.  When SEAD was increased to its 

high level (adding a Recon scout/sniper team), mean kills was reduced by 1.2, a very 

significant result.  The MSE of Enemy Size is an order of magnitude larger than Altitude 

and appears to be the dominant factor. 
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Figure 13.  Factor effects on mean Blue RW Assault Kills 

 

The only significant two-way interaction is Altitude and Enemy Size.  Table 5 

demonstrates the interaction effect on mean kills per mission.   When Altitude is low, the 

mean number of kills is below the mean no matter what level Enemy Size is set at.  When 

altitude is high and Enemy Size is low, mean number of kills is still below the grand 

mean.  When both factors are set at their high levels, the mean number of kills almost 

triples in number. 

 

1.125                                                                           3.65 

mean = 1.85 

1.025                                                                            1.60 

               1500 (+) 

                 Alt 

                50 (-) 

27 (-)                          Enemy Size                              54 (+) 

Table 5.  Two-way interaction effect of Altitude and Enemy Size on Mean Blue RW Kills 
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2. Analysis of Model Assumptions 

We again use the same techniques to check for model normality, common 

variance and points of high leverage.  Figure 14 depicts the qq-plot of residuals.  It  has 

heavy tails due to outliers of both high and low number of kills.  The box-plot of 

residuals for each factor level shown in Figure 15 reinforces the evidence for the 

existence of a number of low and high outliers.  The median is still very close to zero 

with a value of -0.15.    The choppiness in the qq-plot is due to the nature of the integer 

response variable, which only takes on integer values between 0 and 7. 
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Figure 14.  QQ-plot of Blue RW Assault Kills 
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Figure 15.  Box-plot of residuals for each factor level 
 
 

Homoscedasticity was again checked with a plot of the fitted and residual values 

for the model as shown in Figure 16.  This plot is even more stratified than the detection 

plot.  This is again due to the small number of integer values that the response variable 

can take on.  Each column represents a separate treatment run and each row is a common  
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Figure 16.  Plot of Fitted versus Residuals for Assault RW Kills 
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response value.  Within each of these columns the data appears to be evenly spread, 

though there are outliers at the High Altitude and High Enemy Size again.  This 

represents a realistic possible outcome during combat operations. 

Figure 17 shows a Cook's distance plot for the Assault kill data.  All values are 

below .06, which indicates they do not have high influence.  Data points 106 and 26 are 

both from treatment 10 and data point 102 is from treatment 6.  Both treatments have 

Altitude and Enemy Size set at the high level.  Points 26 and 106 have a value of 7 kills 

each which is quite high.  Point 102 has a value of 0 kills which is quite low for a high 

altitude and large enemy size run.  In all cases the number of kills is not an unrealistic 

result given the operational scenario. 
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Figure 17.  Cook's distance for Blue RW Assault Kill data 

 

In general, the model essentially meets the ANOVA assumptions.  There are no 

points of high leverage or influence, and residuals are close to normal, though there are 

some outliers causing heavy tails.  The assumption of residuals distributed as 

independent, identically distributed N(0, ) appears to hold. 2σ
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D. MOE 2B:  BLUE RW ESCORT KILLS 

1. Factor Significance 

Table 6 shows the ANOVA results for the Blue Escort kills.  It has similar  

 

ANOVA 
(Response Variable:  Blue RW Escort Kills) 

 
               Df  Sum of Sq   Mean Sq  F Value     Pr(F)  
         Alt   1   108.900    108.9000  162.1974   0.0000000 
        Rtes   1     0.625      0.6250    0.9309   0.3362285 
         LZs   1     0.400      0.4000    0.5958   0.4414455 
        SEAD   1     2.025      2.0250    3.0161   0.0845524 
      Escort   1     0.025      0.0250    0.0372   0.8472547 
  Enemy.Size   1    48.400     48.4000   72.0877   0.0000000 
    Alt:Rtes   1     0.625      0.6250    0.9309   0.3362285 
     Alt:LZs   1     2.500      2.5000    3.7235   0.0555898 
    Alt:SEAD   1     4.225      4.2250    6.2928   0.0132161 
  Alt:Escort   1     1.225      1.2250    1.8245   0.1788642 

    Alt:Enemy.Size   1    10.000     10.0000   14.8942   0.0001702 
   Rtes:SEAD   1     0.000      0.0000    0.0000   1.0000000 

   Rtes:Enemy.Size   1     0.625      0.6250    0.9309   0.3362285 
 
      Residuals 146    98.025   0.6714   
                  

Main Effects 
 
       Effects      se  
 Alt  0.0022759   0.0001909 
Rtes -0.1250000   0.1383995 
 LZs -0.1000000   0.1383995 
SEAD -0.4500000   0.2767989 

    Escort  0.0500000   0.2767989 
Enemy.Size  0.0880000   0.0110720 
 

Interactions 
 

            Effects 
       Alt:Rtes   -0.0000172412 
        Alt:LZs   -0.000344824 
       Alt:SEAD    0.00089655 
     Alt:Escort   -0.0002413793 
 Alt:Enemy.Size    0.000482758 
      Rtes:SEAD    5.72968e-016 
Rtes:Enemy.Size    0.01 
    

mean: 2.05  Standard Error:  0.0978632 

Table 6.  ANOVA Results for Blue Escort Kills 

 

results as assault kills.  Altitude and Enemy Size again dominate the model, but this time 

SEAD is not significant. Number of Routes, Number of LZs and Escort still remain 

insignificant.  Altitude and SEAD as well as Altitude and Enemy Size are significant 

two-way interactions.  One difference for this model is that Altitude MSE is now an order 

of magnitude larger than Enemy Size; a reversal from the two previous models.  Figure 

18 depicts the effects of the factors on the response.  Altitude's dominance is clearly 

44 
 

 



displayed.  Also, though not significant, the number of escort kills is decreased when the 

number of Routes and LZs is increased from 1 to 3.  This is again a reversal from the 

previous model of assault kills.  

 

 

1.
5

2.
0

2.
5

m
ea

n 
of

 E
sc

or
tK

ills

Factors

50

1500

1

3

1
3

0

1
01

27

52

Alt Rtes LZs SEAD Escort EnemySize

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 

 
Figure 18.  Plot of factor effects on mean Escort Kills 

 

Altitude plays such a dominant effect because the escorts are the first aircraft in 

the objective area and remain there for the longest period of time.  They will typically 

stay in the objective area after the assault aircraft have left to provide fire support for the 

GCE.  In this scenario they remained in the objective area for 10 minutes after the initial 

insert.  This is the cause for the higher mean number of kills and for the dependence on 

altitude.  Though there may be fewer enemy, when aircraft fly higher and remain in the 

area for longer periods of time it allows for a greater opportunity to be engaged. 
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2.075                                                                             3.65 

mean = 2.05 

0.925                                                                           1.525 

               1500 (+) 

                 Alt 

                50 (-) 

27 (-)                          Enemy Size                              54 (+) 

 

 

 

 

Table 7.  Two-way interaction effect of Altitude and Enemy Size on Escort Kills 
 

Table 7 shows the two-way interaction effect of Altitude and Enemy Size.  It 

demonstrates the dominance of Altitude.  Regardless of the level of enemy size, the mean 

number of kills is below the mean when Altitude is set to its lower level.  And likewise, 

when Altitude is set to the higher level the mean number of kills is well above the grand 

mean. 

Table 8 depicts the Altitude and SEAD two-way interaction.  At low altitude the 

mean number of kills is well below the mean for both levels of SEAD, but adding SEAD 

has the effect of reducing mean kills further.  At high Altitude this is not the case, as 

adding SEAD does not reduce the mean number of escort kills.  It is increased by a small 

amount, which is probably due to some outliers, which we will investigate in our model 

assumption analysis. 

 

 
2.85                                                                               2.925 

mean = 2.05 

1.50                                                                                0.95 

               1500 (+) 

                 Alt 

                50 (-) 

Without (-)                      SEAD                                with (+) 

 

 

 

 

Table 8.  Two-way interaction effect of Altitude and SEAD on mean Escort Kills 
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2. Analysis of Model Assumptions 

Figures 19 and 20 depict the qq-plot and box-plot of residuals by factor level 

respectively.  There is some indication in the tails to outliers.  The box-plot confirms this 

with several outliers in the lower range. 
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Figure 19.  QQ-plot of Residuals for Escort Kills 
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Figure 20.  Box-plot of residuals for each factor level 
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Figure 21.  Fitted versus Residual plot for Escort Kills 

  

Figure 21 has the same stratified characteristics seen in earlier trials.  The values 

seem to be fairly well distributed amongst treatment runs, with indication of outliers.  The 

Cook's distance plot in Figure 22 shows all values below 0.06 indicating no points of 

significant leverage.  Points 2, 88 and 114 are all high altitude treatment runs.  Points 114 

and 88 have 0 kills, while point 2 has 5 kills.  These values are also realistic results.  
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Figure 22.  Cook's distance plot for Escort Kills 
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Overall, our model meets all the assumptions of the ANOVA model. The 

assumption of residuals distributed as independent, identically distributed N(0, ) 

appears to hold.  

2σ

E. POWER OF THE TEST 

When conducting ANOVA, there are two types of error associated with each 

hypothesis.  Type I error, denoted by α , refers to rejecting the null hypothesis, Ho, when 

it is true.  Type II error, denoted by β , refers to not rejecting the null hypothesis, Ho, 

when it is false.  Type II error reflects the sensitivity of the analysis when Ho is true. The 

power of the test is defined as (1- β ), or the probability of rejecting the null hypothesis, 

given it is false [Ref 16:  p. 21].  If the variance of the response variable can be estimated, 

then β  can be calculated for a given level of deviation from the response mean. 

The power of the test was calculated for each of the MOEs for a 1,3 and 5 percent 

deviation from the response mean and results are displayed in Table 9.  An alpha level of 

.05 was assumed.  Results indicate a .001 or lower probability of committing a Type II 

error at a 5% deviation from the mean for both RW Detections and Escort Kills, and a .02 

probability for RW Assault Kills.  This indicates that we have conducted enough 

replications to ensure rejecting the null hypothesis when it is false at a reasonable level. 

 

% Deviation from    

Response Mean 

RW Detections Assault Kills Escort Kills 

1% .9884 .1262 .2988 

3% .9999 .6639 .9902 

5% .9999 .9797 .9999 

Table 9.  Power of Test for MOEs 
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F. VARYING THE NUMBER OF LANDING ZONES  

Finding the number of routes and LZs insignificant appeared to be counter-

intuitive.  We decided to make some further investigations into this issue by fixing all 

factors at acceptable levels and making two scenario runs; one with a single LZ into the 

objective area and the second with three LZs into the objective area.  Table 9 below 

depicts the experimental design for the two scenario runs.  Ten replications of each run 

were completed.  A two-sample t-test was the used to determine if there was any 

significant difference between the mean number of aircraft kills or detections for the two 

simulation runs.   

1 Landing Zone 3 Landing Zones 

Factor Level Factor Level 

Altitude Low  (-) Altitude Low (-) 

Routes 3 (+) Routes 3 (+) 

SEAD Use (+) SEAD Use (+) 

Escort Detached (-) Escort Detached (-) 

Enemy Size 27 (-) Enemy Size 27 (-) 

Table 10.  Experimental design for varying the number of LZs 

 

1. Two-sample T-test 

The two-sample t-test is based on the student's t distribution and requires the 

assumption that the samples distributions are independent, normally distributed with 

common variance.  The t-test tests the hypothesis:  Ho: .  The alternative 

hypothesis being:  Ha:  .  The null hypothesis is accepted if  

0=−
−−

YX

0≠−
−−

YX
2,2 −+

<
nm

tαt  or 

2,2 −+
−>

nm
tt α  [Ref 13:  p.358-9]. 
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2. Findings 

The results from the 20 runs are listed in Table 10 below.  T-tests were conducted 

on assault aircraft kills, escort aircraft kills and detections.  We also looked at the number 

of GCE kills to see if the number of LZs had any effect on their mission.  In all four cases 

the findings were unremarkable.  There was found to be no significant difference in 

means for one LZ or three LZs for any of the MOEs.  The raw data results from the runs 

are listed in Appendix D. 

There could be two explanations for this.  The first is the same argument 

mentioned earlier, that the use of one LZ allows for concentration of blue firepower and 

rapid buildup of Blue combat power in a single location.  The other is that it could be due 

to the way the simulation calculates attrition when forces are aggregated. When more 

forces are concentrated into a single location their firepower is more effective and less 

vulnerable to enemy fire.   

 

Assault Kills Escort Kills Detections GCE Kills  

1 LZ 3 LZs 1 LZ 3 LZs 1 LZ 3 LZs 1 LZ 3 LZs 

Mean .5 .4 .8 1.1 201.5 200.6 16.5 16.0 

t 0.3612 0.9762 0.0649 0.1215 

p-value 0.7222 0.3419 0.949 0.9047 

95% CI [ -.482 , .682 ] [ -.946 , .346 ] [ -28.24 , 30.04 ] [ -8.147, 9.147 ] 

Table 11.  Results from t-test of 1 and 3 LZ simulation runs 

 

G. SIMULATION FACE VALIDATION 

To conduct our face validation we concentrated on four areas; aircraft casualty 

rates, GCE casualty rates, kill shot realism and movement rates.  Two tables were 

generated from simulation results to help depict the aircraft kill rates.  Table 12 shows the 

mean number of aircraft kills by factor level.  Table 13 shows the aircraft casualty rates 

for assault aircraft, escort aircraft and combined rate by factor level.   
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The results for aircraft kills appear to be realistic given the tactical scenario.  The 

overall mean number of kills for both assault and escort aircraft is about 2.  When 

analyzing the mean kills by factor levels, the outcomes are consistent with the input 

factor levels.  For example, when aircraft altitude is moved from low to high level the 

mean number of aircraft kills almost double for assault and more than doubles for escort 

aircraft.  This is intuitively the expected outcome.  The same is true for enemy size.   

  
Mean  
Assault Kills 

Mean  
Escort Kills 

Low Altitude  1.31 1.09
High Altitude 2.39 2.88
1 Route  1.78 2.11
3 Route  1.93 1.60
1 LZ 1.76 2.10
3 LZ 1.94 2.00
No SEAD 2.16 2.16
SEAD 1.54 1.94
Attached Escort 1.975 2.06
Detached Escort 1.73 2.04
2:1 Force Ratio 1.08 1.50
3:1 Force Ratio 2.63 2.60

 

 

 

 

 

 

 

 

Table 12.  Mean Aircraft Kills by factor level 

 

The overall casualty rate for assault aircraft is 15% while the escorts have a 40% 

casualty rate.  This higher rate is due to the amount of time spent in the objective area.  

This again is a realistic outcome.  One area of concern is the casualty rate difference at 

the differing LZ levels.  This is not necessarily an intuitive result.  More research needs to 

be conducted before a definitive answer can be reach.  
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 Assault 
Casualty Rate 

Escort 
Casualty Rate Combined 

Low Altitude 0.1092 0.2188 0.1640 
High Altitude 0.1992 0.5750 0.3871 
1 Route 0.1483 0.4225 0.2854 
3 Routes 0.1608 0.3209 0.2409 
1 LZ 0.1467 0.4200 0.2833 
3 LZs 0.1617 0.4000 0.2808 
No SEAD 0.1800 0.4325 0.3063 
SEAD 0.1283 0.3875 0.2579 
Attached Escort 0.1646 0.4125 0.2885 
Detached Escort 0.1442 0.4075 0.2758 
2:1 Force Ratio 0.0900 0.3000 0.1950 
3:1 Force Ratio 0.2192 0.5200 0.3696 
Overall mean 0.1543 0.4014 0.2779 

Table 13.  Aircraft Casualty Rates by Factor level 

 

We conducted qualitative analysis of the kill shot ranges (in meters) to ensure that 

the weapon systems were making realistic shots.  Figures 23 and 24 depict Red and Blue 

kill shot ranges respectively.  Of note, the x-axis depicts the shot number, not the number 

of shots taken.  Each range is one shot. All of the shots taken by each weapon system are 

with their respective ranges and capabilities, though there are a couple of shots by the 

RPG and AT-4 that are at quite a distance considering the environment.  Overall, the 

shots are within the maximum effective range.  Blue side shots are realistic as well.  

There is only one shot where the AH-1W 20mm made a kill at 800 meters.  This is within 

the capability of the weapon system, but at the far end of the engagement envelope for an 

urban environment.  The simulation overall, appeared to give realistic results for the RW 

operations.  Appendix E contains screen captures of simulation runs from this scenario. 
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Figure 23.  Red shot kill ranges by weapon system 
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The focus of this thesis was not on infantry operations, but we looked at our 

results of Blue GCE kills to get a qualitative sense of how the simulation depicts infantry 

combat in an urban environment.  Ground force operations were carried out for 15 

minutes after insertion into objective LZs.  Table 14 shows the GCE kills and casualty 

rates for the twenty replications completed from the scenario runs where the number of 

LZs were varied.  The over all rate is 15 %, which is half of the historical urban casualty 

rate of 30% [ Ref 9:  p. 5 ].  This does not appear to be realistic.  It may be due to the fact 

that most of the ground forces were left in squad aggregates and not modeled individually 

with the exception of three squads that entered buildings. 

 

Replication Blue GCE Kills GCE casualty Rate
1 6 0.0545
2 8 0.0727
3 19 0.1727
4 9 0.0818
5 33 0.3000
6 24 0.2182
7 11 0.1000
8 3 0.0273
9 32 0.2909
10 20 0.1818
1 28 0.2545
2 9 0.0818
3 21 0.1909
4 11 0.1000
5 25 0.2273
6 8 0.0727
7 11 0.1000
8 15 0.1364
9 10 0.0909
10 22 0.2000

 overall 0.1477
 

Table 14.  Blue GCE casualty rates 
 

This leads us to the Blue GCE movement rate.  From insert at the LZs 

(approximately 200 meters from objective) to movement to the objective buildings it took 

the ground forces no longer than fifteen minutes to clear the objective.  This appears to be 
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much too fast.  Again this may be due to the level of aggregation of the forces.  JCATS 

allows for suppression of forces which does slow rates considerably for individual 

entities, but the aggregated forces did not appear to be quite as affected.   
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

To review, the objectives of this thesis are listed below, each of which will be 

addressed in the following paragraphs.  

 Evaluate rotary wing survivability in an urban environment 

 Determine major factors that impact on survivability 

 Evaluate effect of urban SEAD on R/W survivability 

 Evaluate JCATS as an urban operations modeling tool 

 Give insight into development of doctrine and TTPs for urban R/W 
operations 

 
1. Rotary Wing Survivability 

Given the tactical circumstances of this scenario, rotary wing aircraft are 

survivable in an urban environment.  The GCE no-go criteria (less than 8 CH-46E 

equivalents in zone) was never met.  Of the 180 total runs made, seven assault kills (the 

highest number of assault aircraft killed) was achieved 3 times.  The highest number of 

assaults killed at low altitude was 4.  Escort aircraft endured a higher casualty rate, but 

this is to be expected given the nature of their mission.  If proper tactical procedures are 

followed RW aircraft will survive in urban combat. 

2. Major Factors of Influence 

For assault aircraft, Altitude and SEAD proved to be the significant factors for 

survival.  Altitude, number of routes, number of LZs and SEAD presence influenced 

detection rate of these aircraft.  Detection rates can be lowered significantly if profiles are 

flown at low altitude, with multiple avenues of approach and LZs as well the use of 

SEAD.  Escort aircraft fared the best when in low altitude profiles.  Though not 

statistically significant at our alpha level, SEAD did generally improve survivability.   

Of note, the number of routes and LZs did not influence aircraft kill rates in this 

scenario.  The routing was not significant since threats were not encountered until aircraft 

57 
 

 



were in the objective area.  LZ results may be reflective of the small objective area used 

in this scenario. 

3. SEAD Effectiveness 

The use of SEAD (scout/sniper team) was found to be significant for RW 

survivability.  The presence of SEAD lowered the mean number of assault aircraft kills 

by 17% and lowered the number of escort kills by 11%.  SEAD was also found to have 

an impressive suppression affect for lowering the number of detections.    This is an 

encouraging result and should lead to the refinement of SEAD tactics in the urban 

environment. 

4. JCATS Face Validation 

Our qualitative results considering simulation realism are encouraging.  From the 

standpoint of RW aircraft, the model outputs appear to be realistic.  When Altitude and 

Enemy level were increased to their higher levels, resulting casualty and detection rates 

were expectedly higher.  The acquisitions and kill shots of all weapon systems were 

realistic and within the capabilities of the system being modeled.  Overall, the output for 

RW urban operations seems to be realistic. 

This simulation was designed as a modeling tool for combat systems to explore 

tactics and procedures as well as a training tool for military staffs.  It is an excellent 

platform for these uses and further research needs to continue. 

5. Tactical Insights 

The use of scout/sniper teams for urban RW operations is the most encouraging 

result from this study.  Their addition significantly lowered aircraft kill rates.  The 

intuitive use of low altitude flight profiles was confirmed.  The surprising result of the 

insignificance of the number of LZs and routes needs to be looked at further.  Their use 

when conducting multiple waves may be effective.  Unfortunately there was not enough 

time in this study to conduct analysis on such operations.  

B. RECOMMENDATIONS 

1. Urban Rotary Wing Tactics 

The use of scout/sniper teams as urban SEAD needs to be utilized whenever 

possible.  Their use will help ensure the survivability of aircraft as well as the ground 
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force conducting the operation.  Tactics utilizing multiple routes and LZs should not be 

discarded.  This study found them insignificant when attacking a single objective with the 

enemy force concentrated in a small area.  This may not always be the situation and 

METT-T factors will apply.  Marine Corps altitude doctrine is sound.  When enemy 

threat dictates or is unknown, low altitude profiles should be maintained.  Fleet 

operational studies need to incorporate these tactics to ensure their validity and refine 

their use. 

2. Urban Combat Simulation 

The JCATS combat model provides excellent features for modeling urban 

combat.  Street, building and subterranean features allow for detailed modeling of urban 

areas.   Systems can be modeled in great detail to produce realistic outcomes.  Urban 

modeling research needs to continue using this simulation for both insights and 

simulation validity.  This modeling platform could contribute significantly to tactical 

doctrine in urban environments for both rotary wing and infantry operations. 

One weakness in the simulation appeared to be in the casualty rate assessed by the 

model.  This was not a detailed study of ground operations, so further research needs to 

be conducted to evaluate ground combat operations modeled by this simulation. 

C. FURTHER RESEARCH 

This thesis only covered a small fraction of urban operations.  There are several 

areas of research that could be pursued as follow-on studies, particularly regarding rotary 

wing operations.  Some areas of study are included below. 

1. Urban Rotary Wing Operations 

Detailed research could be done on rotary wing survivability in urban combat 

when multiple waves of aircraft are required.  Survivability needs to be looked at as a 

function of time in the objective area.  Aircraft may be survivable when conducting 

operations with limited time in the vicinity of the threat, but with prolonged exposure this 

may not be possible.  Multiple avenues of approach and LZs may play a critical role in 

such a setting.  Varying the number of LZs as well as changing LZs during each wave 

could be studied for effectiveness.  Rotary wing CAS and night operations are other areas 

where simulation work could give insight into what tactics are effective.    
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2. Urban Infantry Operations and Model Validation 

Insight could be gained from modeling ground operations in urban settings as 

well.  This thesis did not focus on these operations, but tactical and doctrinal gains could 

be achieved by conducting studies in this area with the use of JCATS.  To ensure 

accurate results, much more research needs to be conducted into the validity of JCATS.  

To do this, real world data is needed.  Fully instrumented (both ground and aviation) 

training events need to be conducted at MOUT sites to gather this information to use as a 

baseline for comparison. In addition, detailed studies need to be completed on the 

simulation inputs.  Though the face validation conducted in this thesis found output to be 

realistic, algorithms for acquisition, line of sight and engagement adjudication all need to 

be studied in order to evaluate their accuracy and validity. 
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APPENDIX A.   ASSAULT SUPPORT DECISION MATRIX 

The table below shows an example of the Assault Support Decision Matrix.  

Members of the planning staff would fill out the table upon completion of COA 

development to aid in the decision of choosing a COA.  Each factor in the matrix is rated 

by 1 for good, 2 neutral and 3 worst.  Repeat values are possible for different COAs.  

Factors that are equal get the same rating.  The standard practice is to determine the 

average number for each COA.  The one with the lowest average has the greatest chance 

of success.  A more complicated scheme could be devised to weight the factors according 

to importance for a particular mission. 

 

COAs: COA 1 COA 2 COA 3 

Air route not subject to 
enemy fire & 
observation 

   

Enemy locations and 
reaction time to LZ 

   

LZ under friendly eyes    

LZ not accessible to 
vehicles 

   

Hides near the LZ    

Distance to objective to 
the LZ 

   

C2 routes to objective    

Objective hot or cold    

Doctrinal application    

Length of time till link-
up with ground forces 

   

    

RISK:    

Assault Support Decision Matrix 
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APPENDIX B.   26-2 FACTORIAL DESIGN 

Factorial Design: 
 
Resolution: IV 
Runs:        16    
Fraction:   1/4 
 
 

Run Altitude Routes LZs SEAD Escort Enemy Size 
1 50 1 1 0 Detached 27 
2 1500 1 1 0 Attached 27 
3 50 3 1 0 Attached 54 
4 1500 3 1 0 Detached 54 
5 50 1 3 0 Attached 54 
6 1500 1 3 0 Detached 54 
7 50 3 3 0 Detached 27 
8 1500 3 3 0 Attached 27 
9 50 1 1 1 Detached 54 
10 1500 1 1 1 Attached 54 
11 50 3 1 1 Attached 27 
12 1500 3 1 1 Detached 27 
13 50 1 3 1 Attached 27 
14 1500 1 3 1 Detached 27 
15 50 3 3 1 Detached 54 
16 1500 3 3 1 Attached 54 

 
 
Design Generators:  E = ABC  F = BCD   
 
Alias Structure 
 
I + ABCE + ADEF + BCDF 
 
A + BCE + DEF + ABCDF 
B + ACE + CDF + ABDEF 
C + ABE + BDF + ACDEF 
D + AEF + BCF + ABCDE 
E + ABC + ADF + BCDEF 
F + ADE + BCD + ABCEF 
AB + CE + ACDF + BDEF 
AC + BE + ABDF + CDEF 
AD + EF + ABCF + BCDE 
AE + BC + DF + ABCDEF 
AF + DE + ABCD + BCEF 
BD + CF + ABEF + ACDE 
BF + CD + ABDE + ACEF 
ABD + ACF + BEF + CDE 
ABF + ACD + BDE + CEF 
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APPENDIX C.   FACTORIAL DESIGN RESULTS 

 

 

 

 

 

 50

 50

 50

 

 

Run Alt Rtes LZs SEAD Escort Enemy Escort Assault Blue
Size Kills Kills Det

1 50 1 1 0 0 27 1 1 37
2 1500 1 1 0 1 27 5 4 350
3 50 3 1 0 1 52 2 2 38
4 1500 3 1 0 0 52 4 5 292
5 50 1 3 0 1 52 2 2 36
6 1500 1 3 0 0 52 3 1 483
7 50 3 3 0 0 27 1 2 34
8 1500 3 3 0 1 27 1 2 361
9 50 1 1 1 0 52 0 1 41

10 1500 1 1 1 1 52 3 0 437
11 3 1 1 1 27 0 0 253
12 1500 3 1 1 0 27 2 1 329
13 1 3 1 1 27 2 1 221
14 1500 1 3 1 0 27 1 2 416
15 3 3 1 0 52 3 2 375
16 1500 3 3 1 1 52 5 4 446
1 50 1 1 0 0 27 0 0 33
2 1500 1 1 0 1 27 3 1 438
3 50 3 1 0 1 52 1 1 44
4 1500 3 1 0 0 52 4 4 468
5 50 1 3 0 1 52 1 3 46
6 1500 1 3 0 0 52 3 4 479
7 50 3 3 0 0 27 2 1 23
8 1500 3 3 0 1 27 1 2 353
9 50 1 1 1 0 52 2 1 43

10 1500 1 1 1 1 52 5 7 476
11 50 3 1 1 1 27 0 1 328
12 1500 3 1 1 0 27 4 1 315
13 50 1 3 1 1 27 1 1 315
14 1500 1 3 1 0 27 3 0 322
15 50 3 3 1 0 52 1 0 371
16 1500 3 3 1 1 52 4 1 372
1 50 1 1 0 0 27 1 2 36
2 1500 1 1 0 1 27 1 0 380
3 50 3 1 0 1 52 1 3 47
4 1500 3 1 0 0 52 3 5 591
5 50 1 3 0 1 52 2 2 46
6 1500 1 3 0 0 52 4 6 410
7 50 3 3 0 0 27 1 2 27
8 1500 3 3 0 1 27 1 0 356
9 50 1 1 1 0 52 1 1 41

10 1500 1 1 1 1 52 5 3 432
11 50 3 1 1 1 27 0 0 276
12 1500 3 1 1 0 27 2 0 400
13 50 1 3 1 1 27 1 2 302
14 1500 1 3 1 0 27 3 1 321
15 50 3 3 1 0 52 2 2 289
16 1500 3 3 1 1 52 3 3 508
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3
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3
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5

4

0
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18

68

41
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 0 21 50 1 1 0 7 0 0 3
2 1500 1 1 0 1 27 3 1 424
3 50 3 1 0 1 52 3 2 3
4 1500 3 1 0 0 52 4 4 399
5 50 1 3 0 1 52 2 3 3
6 1500 1 3 0 0 52 4 3 419
7 50 3 3 0 0 27 2 3 2
8 1500 3 3 0 1 27 3 2 392
9 50 1 1 1 0 52 1 0 4

10 1500 1 1 1 1 52 3 3 613
11 50 3 1 1 1 27 0 2 321
12 1500 3 1 1 0 27 2 1 318
13 50 1 3 1 1 27 2 0 204
14 1500 1 3 1 0 27 2 2 370
15 50 3 3 1 0 52 1 1 389
16 1500 3 3 1 1 52 3 7 497
1 50 1 1 0 0 27 1 1 3
2 1500 1 1 0 1 27 3 1 422
3 50 3 1 0 1 52 2 0 4
4 1500 3 1 0 0 52 4 3 477
5 50 1 3 0 1 52 2 3 4
6 1500 1 3 0 0 52 4 5 378
7 50 3 3 0 0 27 1 1 2
8 1500 3 3 0 1 27 2 1 353
9 50 1 1 1 0 52 2 2 4

10 1500 1 1 1 1 52 3 4 612
11 50 3 1 1 1 27 0 1 289
12 1500 3 1 1 0 27 3 0 312
13 50 1 3 1 1 27 2 1 298
14 1500 1 3 1 0 27 1 1 428
15 50 3 3 1 0 52 1 1 387
16 1500 3 3 1 1 52 3 2 441
1 50 1 1 0 0 27 1 1 3
2 1500 1 1 0 1 27 2 3 488
3 50 3 1 0 1 52 2 2 3
4 1500 3 1 0 0 52 4 5 468
5 50 1 3 0 1 52 1 2 4
6 1500 1 3 0 0 52 4 6 480
7 50 3 3 0 0 27 1 1 2
8 1500 3 3 0 1 27 0 2 379
9 50 1 1 1 0 52 1 1 4

10 1500 1 1 1 1 52 4 5 480
11 50 3 1 1 1 27 1 1 321
12 1500 3 1 1 0 27 2 1 316
13 50 1 3 1 1 27 1 1 275
14 1500 1 3 1 0 27 2 0 409
15 50 3 3 1 0 52 1 1 385
16 1500 3 3 1 1 52 5 7 382



 01 50 1 1 0 27 1 1 377
2 1500 1 1 0 1 27 3 3 503
3 50 3 1 0 1 52 3 4 428
4 1500 3 1 0 0 52 4 6 392
5 50 1 3 0 1 52 2 2 341
6 1500 1 3 0 0 52 4 0 363
7 50 3 3 0 0 27 1 3 346
8 1500 3 3 0 1 27 2 0 274
9 50 1 1 1 0 52 2 1 407

10 1500 1 1 1 1 52 5 7 383
11 50 3 1 1 1 27 1 0 223
12 1500 3 1 1 0 27 2 0 349
13 50 1 3 1 1 27 0 1 249
14 1500 1 3 1 0 27 2 0 365
15 50 3 3 1 0 52 0 1 363
16 1500 3 3 1 1 52 2 3 443
1 50 1 1 0 0 27 1 0 340
2 1500 1 1 0 1 27 0 2 440
3 50 3 1 0 1 52 1 0 409
4 1500 3 1 0 0 52 4 4 404
5 50 1 3 0 1 52 2 2 401
6 1500 1 3 0 0 52 4 3 391
7 50 3 3 0 0 27 1 0 247
8 1500 3 3 0 1 27 1 0 357
9 50 1 1 1 0 52 0 0 340

10 1500 1 1 1 1 52 2 0 559
11 50 3 1 1 1 27 2 0 325
12 1500 3 1 1 0 27 2 1 365
13 50 1 3 1 1 27 0 1 244
14 1500 1 3 1 0 27 3 1 413
15 50 3 3 1 0 52 1 0 351
16 1500 3 3 1 1 52 3 6 549
1 50 1 1 0 0 27 2 1 391
2 1500 1 1 0 1 27 2 0 418
3 50 3 1 0 1 52 3 4 478
4 1500 3 1 0 0 52 2 3 480
5 50 1 3 0 1 52 2 4 336
6 1500 1 3 0 0 52 4 4 502
7 50 3 3 0 0 27 1 1 301
8 1500 3 3 0 1 27 1 2 338
9 50 1 1 1 0 52 2 0 441

10 1500 1 1 1 1 52 5 2 390
11 50 3 1 1 1 27 0 0 297
12 1500 3 1 1 0 27 2 2 360
13 50 1 3 1 1 27 1 2 307
14 1500 1 3 1 0 27 2 1 399
15 50 3 3 1 0 52 1 2 378
16 1500 3 3 1 1 52 3 2 387
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 01 50 1 1 0 27 2 2 384
2 1500 1 1 0 1 27 2 1 418
3 50 3 1 0 1 52 2 2 612
4 1500 3 1 0 0 52 4 4 328
5 50 1 3 0 1 52 2 1 338
6 1500 1 3 0 0 52 3 1 559
7 50 3 3 0 0 27 1 2 309
8 1500 3 3 0 1 27 3 1 338
9 50 1 1 1 0 52 0 2 443

10 1500 1 1 1 1 52 3 0 472
11 50 3 1 1 1 27 1 0 271
12 1500 3 1 1 0 27 2 1 382
13 50 1 3 1 1 27 0 1 299
14 1500 1 3 1 0 27 2 1 388
15 50 3 3 1 0 52 1 1 389
16 1500 3 3 1 1 52 4 4 351
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APPENDIX D.   VARYING LZ RUN RESULTS 

 

Run # LZs Assault Kills Escort Kills Aircraft Detections Blue GCE Kills 
1 1 0 1 159 6 
2 1 0 1 209 8 
3 1 0 1 250 19 
4 1 1 0 204 9 
5 1 1 1 178 33 
6 1 1 2 182 24 
7 1 0 0 145 11 
8 1 1 0 261 3 
9 1 0 1 203 32 

10 1 1 1 224 20 
1 3 0 2 150 28 
2 3 1 2 213 9 
3 3 1 0 213 21 
4 3 0 1 217 11 
5 3 0 1 197 25 
6 3 0 0 193 8 
7 3 2 1 211 11 
8 3 0 1 175 15 
9 3 0 2 206 10 

10 3 0 1 231 22 
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APPENDIX E.   JCATS SIMULATION DISPLAYS 

  

 

 

JCATS 'playbox' view of simulation.  Aircraft enroute to objective area. 
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Objective area view of aircraft approaching LZs. 
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Aircraft disembarking troops in objective area. 
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